Yukui Zhang
Dalian Institute of Chemical Physics, Chinese Academy of Sciences
The in-depth study of all proteins expressed in a certain sample could provide information of various biological procedures. However, the complexity of proteomes brings great challenges to analytical chemists. Therefore, recently, we have been devoted into the development of new methods for both qualitative and quantitative proteome analysis, and applied them into the proteome analysis of velvet antler.
The exceptional growth rate of velvet antler makes it a valuable model for studying the development of tissues, such as blood vessels, cartilage and bone. Meanwhile, investigating the activities of extracted proteins from velvet antlers promisingly leads to the discovery of new active factors which regulate the development of above-mentioned tissue types. In this study, a novel sequential protein extraction method was developed for proteome profiling and bioactivity study of velvet antlers. Herein, four antler growing tips were pooled to create a proportional pooled sample, and three aliquots of which were extracted in parallel using the developed extraction method. For each sample, proteins were extracted sequentially by saline solvent, mild acid buffer and mild alkaline buffer with good bio-compatibility to prevent proteins denaturation. Then STD lysis buffer was used to extract hydrophobic proteins. The tryptic digest of each fraction was analyzed by nanoRPLC-ESI-MS/MS in triplicates, with false discovery rate for peptide identification adjusted to 1% to create filtered protein group list. In total, 1423 protein groups were identified, which expanded up to 3 times of the previous published dataset. The relative standard deviation of identified peptide and protein group number for all analyses indicated the good reproducibility of the developed sequential protein extraction method. Additionally, proteins extracted by acid buffer and alkaline buffer showed obvious promoting effect on the proliferation of human umbilical vein endothelial cells. All these results demonstrate that the developed sequential extraction method is efficient for the comprehensive proteome analysis and activity investigation of velvet antlers.
|